

Outline

- Motivation for Detector Upgrades
 - The LHC Upgrade Schedule
- The ATLAS Upgrade Program
 - brief review of pre-Phase II work
 - Phase II overview
 - Planned US Involvement
- Preliminary Phase-II Schedule, Budget & Effort Estimates
- Impact of Upgrades on US Infrastructure
 - labs, universities, industry
- Conclusions

Upgrade Motivation

- Physics driven by response to rising luminosity
 - Higher Rates ==> Trigger (mod's to Tracker, Calorimeters, Muon Systems)
 - retain efficient triggers on single leptons with p_⊤ ~ 20 GeV
 - Complex Events (pileup) ==> Tracking (+ Trigger)
 - vertex reconstruction (primary & secondary)
 - tracking in the core of high E₊ jets
 - missing E_T
- Detector performance degradation
 - Performance at High Luminosity
 - Much higher data rates/volumes ==> readout
 - Radiation damage ==> silicon, front end electronics
 - Detector Integrity
 - Detector operating since (at least) 2009 ==> component aging & obsolescence

20122013

2014

20152016

20172018

20192020

2021

20222023

2024

20252026

2027

New LHC Timeline

Run 1: √s=7-8 TeV, ∫Ldt=25 fb-1, pileup μ≈20

updated by CERN Dec. 2, 2013

 $L^{\text{peak}} = 0.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

LS1: phase 0 upgrade

Run 2: √s≈13-14 TeV, ∫Ldt≈120 fb-1, pileup μ≈43

 $L^{peak} = 1.6 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

LS2: **phase 1** upgrade

Run 3: √s≈14 TeV, ∫Ldt≈350 fb-1, pileup μ=50-80

 $L^{\text{peak}} \approx 2-3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

LS3: **phase 2** upgrade

HL-LHC: **Vs≈14 TeV**, **∫Ldt≈3000 fb**⁻¹, pileup **μ≈140-200**

 $L^{peak} = 20x10^{34} \text{ cm}^{-2}\text{s}^{-1}$ leveled to $L^{peak} = (5-7.5)x10^{34} \text{ cm}^{-2}\text{s}^{-1}$

2035
H. Evans
P5 HEP Workshop - Dec 5, 2013

*LS="long shutdown"

2012 ATLAS Detector

ATLAS Detector & Trigger/DAQ

2012 Trigger/DAQ

Muon Dete	ectors Tile (Calorimeter	Liquid Argon Calc	orimeter
			Enquid Aligon Guide	
	Toroid Magnets	Solenoid Mag	net SCI Iracker	Pixel Detector TRT Tracker

Rate (kHz)	2012	Phase II
Bunch Crossing	20,000	40,000
L1 Trigger	75	200
to disk	0.4	~10

Run 1 ATLAS Operations

- Very successful runs at 7 TeV (2010-11) and 8 TeV (2012)
 - ATLAS recorded 5.3 fb⁻¹ (7 TeV) and 21.7 fb⁻¹ (8 TeV)
 - 2012 data-taking efficiency: 93.5% detector efficiencies: 97-100%
- US played a key role in Original ATLAS Construction and Run 1
 - US ATLAS detector construction cost at CD4B: \$165M
 - ~20% of ATLAS "core" costs (no personnel or contingency)

System	Unique US Expertise
Tracking	Pixels: ICs, mechanicsSCT: mechanicsTRT: modules, electronics
Calorimetry	 LAr: FE electronics, LV power FCAL Tile: modules, electronics, LV power
Muons	• Forward: chambers, electronics
TDAQ	• core software, RolBuilder, Timing

Physicist Activity (2013)	FTE
Ops/Computing	142
Analysis	280
Upgrade R&D	48
Phase-I Construction	14
TOTAL	484
Technical Personnel	130

ATLAS Upgrades Overview

System	Phase 0 Upgrades	Phase I Upgrades	Phase II Upgrades
Tracking	IBL pixelspixel new services		 replace pixel/SCT/TRT with all-Silicon tracker
LAr Calo	• new LV power supplies	• finer granularity to L1Calo	 full granularity digital readout at 40 MHz to L1Calo replace forward calorimetry
Tile Calo	• new LV power supplies		 completely replace electronics digital signals to L1 improved mechanics
Muons		NSW endcap muon system	replace readout electronicsprecision (MDT) to L1
TDAQ	Topology at L1Fast TracKer (FTK) at L2L2/Evt Filter/Evt Builder on one CPU	new L1CaloNSW in L1Muoncontinued L2 FTK	 move to L0/L1 architecture add tracking to L1 (L1Track) more use of commodity hardware in HLT/DAQ

Phase 0/I Upgrades

- Primary challenges motivating upgrades
 - Luminosity 2×10³⁴ cm⁻² s⁻¹ at 25 ns bunch crossing
 - ==> 55 pp collisions per bunch crossing (pileup)
 - big effects on: Tracking Efficiency, Trigger (especially single-e/μ)
 - also complicates jet and missing E_T reconstruction
 - Background rate in Forward Muon Trigger System

US in Phase 0/I Upgrades

System	Phase	Unique US Responsibilities	Institutes
Tracking (IBL) [NSF MRI]	0	 ICs: FE-I4 optical data transmission mechanics readout 	Brandeis, Iowa, Ohio, Oklahoma, Oklahoma State, LBNL, SLAC, Stony Brook, UCSC, UNM, Washington
Calorimeter (LAr)	I	 Layer Sum Boards (ADCs, data format, optical xmit) Low Voltage (regulators and POL convertors) Back-end hardware and firmware FCAL Baseplanes 	Arizona, BNL, Columbia, Oregon, Penn, Pitt, SMU, Stony Brook
Muons (NSW)	I	 ASICs: FE readout, Trigger Data Serializer MicroMega Front End Boards MicroMega Trigger: Address Data Driver, Trigger Processor Readout: MicroMega readout drivers Alignment system 	Arizona, BNL, Brandeis, Illinois, Michigan, SLAC, UCI
TDAQ	0 0/I I	 L1Calo → L1 Topology Trigger data distribution (CMX board) L2/EventFilter/EventBuilder merger FTK (5/9 major components) – [NSF MRI] L1Calo electronics (2/5 boards) & firmware 	ANL, BNL, Chicago, Indiana, Illinois, MSU, NIU, Oregon, UCI, SLAC, Wisconsin
Software	0/I	• Very large US effort – but covered from Operations (not Phase	I construction)

US Phase I Upgrade Project

- The Phase I Upgrade Project
 - first major construction effort of US ATLAS since original detector
- This initial phase is limited in scope
 - Cost < \$46M</p>
 - Total Project Cost (NSF+DOE)
 - over ~5 years
- Launched under tight time constraints

System	On-proj FTE	CD-1 US Total Cost (AYM\$)	CD-1 US Core Cost (AYM\$)	ATLAS Core Cost (MCHF)
LAr Calorim	36.6	13.3	3.7	7.6
Muon NSW	51.6	11.8	5.3	11.5
TDAQ	12.5	2.9	0.2	7.8
Management	7.7	4.4		
Contingency		13.7		
TOTAL	108.4	46.0	9.2	36.0*

* includes FTK, TileCal, Common Costs

- DOE CD-0 approval: Aug. 2011
 formal project launch: Nov. 2012
 NSF proposal submitted: Jun. 2013
 DOE CD-1 approval: Sep. 2013
- Phase I upgrade has substantially <u>benefited from Upgrade R&D program</u>
 - funded through US ATLAS Operations program since 2003
- US recognized to be a strong collaborator on ATLAS
 - proven track record, including construction

Phase II Goals

Physics

See ATLAS Phase II LoI for more details: https://cds.cern.ch/record/1502664

Study EWSB Mechanism	precision meas's of Higgs couplings (5-30%), Higgs self-coupling
Probe for signatures of New Physics	SUSY, Extra Dimensions,
Measure Rare Decay Modes	Higgs, B, top,

Detector Requirements

Requirement	Example Physics/Detector Motivation
Trigger & Reconstruct low $p_{_T}$ e/ μ	complex SUSY cascades
Trigger on τ's	$H \rightarrow \tau \tau$
Good lepton e/ μ momentum resolution at high $p_{_T}$	high-mass gauge bosons
Identify Heavy Flavors	complex SUSY cascades
Reconstruct leptons & b's in boosted topologies	resonances in top pairs, W, Z, H
Preserve acceptance in forward region	VBF, Missing E _T
Radiation Tolerance and Granularity	efficient tracking with small fake rates
Compatibility with new trigger system	impacts Front End electronics
Sufficient Computing & associated software	(but not part of Phase II construction)

US Participation in Phase II

Summary of US Phase II Activities & Institutes

Tracker	strip & pixel module assemblystrip staves: electronics, mechanics, assemblypixel readout	BNL, Duke, Iowa, LBNL/Berkeley, Ohio State, Oklahoma, Oklahoma State, Penn, SLAC, UCSC, UNM, Washington, Yale
TDAQ	L1Track, FTK, L0/L1CaloDAQ readout system	ANL, BNL, Chicago, Illinois, Indiana, MSU, NIU, Oregon, Penn, SLAC, UCI
LAr	preamp/shaper, ADC, optical link ASICSForward Calorimeter (FCAL)	Arizona, BNL, Columbia, Penn, SMU, Stony Brook
TileCal	Front End & Main BoardsLow VoltageDetector Control Systems	ANL, Chicago, MSU, UTA
Muons	Endcap Chamber Service Modules & cablingEndcap MDT readout ASIC and mezzanines	Arizona, BNL, Brandeis, BU, Harvard, Michigan, UCI
Software	• Large US effort – not included in Phase II construction	many US institutes

Note: US Phase II Upgrade projects carefully chosen to match unique & specific US expertise

• not proposing many potentially interesting projects where non-US expertise exists

Phase II Tracker

Current ATLAS Tracker

Phase-II Tracker Goals

Good/Robust Pattern Recognition:

Good Track Location at LAr Calorimeter:

High muon efficiency and resolution:

Efficient b-jet tagging w/good light-q rejection: factor 400 rejection for 65% efficiency

14 meas planes (11 hits/track to reduce fakes)

1 mm resolution in z

20% improvement in mass resolution for H→µµ

Phase II Tracker: Performance

Fake Rate vs min N_{hits}

Light-q Rejection vs b-Tag Efficiency

Track Parameter (η < 0.5)	Existing Tracker + IBL	Phase II Tracker
Pileup	0	200
q/p _T [TeV ⁻¹]	0.3	0.2
Transverse Impact Param [μm]	8	8
Longitudinal Impact Param [μm]	65	50

Phase II Tracker: US Involvement

Activity	R	U	S	1	Comments
Strip stave mod. assemb.	X		X	X	 long-standing expertise in precision micro-electronic assembly US would produce 20% of assemblies
Strip staves - Mechanical	X	X	X	X	 world-class expertise in high performance C-based thermo-mech comp's US industry has unique expertise in bus tapes
Strip staves - Electrical	X			Χ	 US digital/analog design ==> key circuit components
Strip stave Assembly			Χ	Χ	• US would load 50% of staves
Strip/Pixel Readout	X	X		Χ	• led design of high-speed I/O DAQ architecture
Pixel module r'dout IC	Х		Χ		• joint ATLAS/CMS R&D: US leadership in RD53
Pixel barrel support	X	Χ	Χ	Χ	• unique experience & in-house constr. capability
Pixel module assemb/test			Χ	Χ	 many sites world-wide – testing by phys/student
Pixel system integration		X			• build on current pixel expertise/leadership
	R			R&r	An R&D activity pursued by the US

R	R&D	An R&D activity pursued by the US						
U	Unique	Unique US project without other collaborators						
S	Schedule	A major production activity shared between many ATLAS institutes If the US did not participate it would cause the schedule to slip						
I	Infrastructure	An activity that uses significant US-based infrastructure/facilities						
* all a	* all activities provide valuable training opportunities for students and postdocs							

Phase II Trigger/DAQ

Phase II TDAQ: Goals & Performance

Phase II Trigger/DAQ Goals

Preserve high eff for Higgs, top, SUSY:

Readout & store data:

More easily maintain system:

L1 p_T for isol e/ μ = 20 GeV w/ rate < 40 kHz

4× higher bandwidth than Phase I common, commercial comp's

~60% of 2013 pub's used single-ℓ triggers

Object(s)	Trigger	Phase I	Phase II	
е	EM20	200 kHz	40 kHz	
γ	EM40	20 kHz	10 kHz	
μ	MU20	>40 kHz	10 kHz	
τ	TAU50	50 kHz	20 kHz	
ee	2EM10	40 kHz	<1 kHz	
γγ	2EM10	as above	~5 kHz	
еμ	EM10_MU6	30 kHz	<1 kHz	
μμ	2MU10	4 kHz	<1 kHz	
ττ	2TAU15I	40 kHz	2 kHz	
other	JET+MET	~100 kHz	~100 kHz	
Total	(7×10 ³⁴ cm ⁻² s ⁻¹)	~500 kHz	~200 kHz	

Phase II TDAQ: US Involvement

Activity	R	U	S	ı	Comments
L1Track / FTK Upgrade	X	X			 leadership in current FTK ==> strong position for L1Track (considering FTK-like architecture)
L0/L1 Calorimeter		X			• build on US responsibilities for Phase I L1Calo & Phase 0 CMX
Readout	X			Χ	• leading role in new-generation, ATCA-based DAQ hardware
Core Software					critical US effort/leadership herebut not part of construction project

Phase II LAr Calorimeter

LAr Electronics in Phase I

LAr Electronics in Phase II

US involvement

Phase II LAr Goals

• Retain ability to trigger on low $p_{\tau} e/\gamma$:

■ Measure missing E_T at high occupancy:

More robust/reliable system:

Maintain forward accept. for jet-tagging:

LOCalo + full granularity input to L1Calo

also at trigger

increased radiation dose

new FCAL

Phase II LAr: US Involvement

Activity	R	U	S	I	Comments
Preamp/Shaper ASIC	X			X	 strong design teams ==> US groups have developed 2 viable designs well ahead of other countries
ADC ASIC	X	X		X	 experience with current FEs & Phase I ADCs ==> US well ahead of competing designs
Optical Link ASICs	X	X		X	 unique expertise in high-speed, rad-hard optical link development
FCAL Construction	X	X		X	 US was primarily responsible for original FCAL have taken the lead on R&D to determine impact of HL-LHC environment on current FCAL

Phase II Tile Calorimeter

Current TileCal Readout

TileCal Readout in Phase II

Retain ability to trigger on jets at LO/L1:

35% of jet energy in TileCal

Measure missing E_T at high occupancy:

also at trigger

More robust/reliable system:

increased radiation dose

Phase II TileCal: US Involvement

Activity	R	U	S	I	Comments
Front End boards	X			X	 US built & maintains current FEB long & unique experience with system
Main Board	X	X		X	 US built & maintains current Main Board long & unique experience with system
LVPS	X	X		X	US redesigned current LVPS systemuniquely qualified for Phase II work
Detector Control Systems					• many US TileCal DCS experts

Phase II Muon System

ATLAS Muon System

US involvement

Phase II Muon Goals

- Maintain L1 threshold at 20 GeV at 40 kHz
- Reduce rate of fake high p₊ trigger muons to < 10%</p>
- Improve trigger p_r resolution by 25-30% in endcap

Phase II Muons: US Involvement

Activity	R	U	S	I	Comments	
Endcap MDT CSMs		X			US designed, built & maintains current CSMslong & unique experience with system	
CSM Cables					• part of the CSM project	
Endcap MDT Mezzanines		Χ		X	US designed & built current mezzanines	
MDT Mezzanine ASIC	Χ	Χ		X	US designing ASIC for Phase I NSWwill adapt that ASIC for Phase II	

Phase II R&D and Next Steps

* R&D Activities in the US

Tracker	Pixels Strips	 Readout IC (RD53), low mass composites, module assembly, high speed readout, sensors, new technologies (rad hard CMOS, monolithic CMOS pixel chip,) Thermal mechanical cores, bus tapes, laminations, high thermal conductivity C materials, module & stave assembly & test, power, trigger features of IC
Calorimeters	LAr Electr. FCAL TileCal	 LAr electronics in Phase I preamp/shaper ASIC, 16-bit ADC, 10 Gbps optical link [NSF MRI] System-On-Chip ASIC for digital part of FE board Effects of HL-LHC environment on LAr FCAL Positive Ion Buildup, pulse degradation with radiation, + minor R&D projects ongoing R&D for all aspects of US effort FE boards, Main board, Low Voltage & POL reg, HV opto-boards, sROD, DCS simulation, beam tests, radiation testing
Muons	Electronics	 BNL ASIC being developed for Phase I MicroMegas can be adapted for Phase II preliminary studies of new Chamber Service Module
TDAQ	Trigger DAQ	 L1Calo work for Phase I Generic readout system R&D at SLAC

Next steps for Phase II

■ TDRs: Pixels & Strips (2016); Calorimeters, Muons TDAQ (2017)

US Phase II Project: Cost & Effort

Phase II Costs based on ATLAS Phase II Lol

ATLAS-wide bottom-up determination of core costs per sub-system

Translating to Phase II US costs

- determine core costs of US deliverables from LoI list
- scale core costs → total costs using past experience
 - silicon: Total (no contingency) / M&S from US Original Construction
 - others: Total (no contingency) / M&S from US Phase I by sub-system
- add Common (from Phase II LoI) and Project Management (scaled from Phase I) costs
- add 50% contingency
- total cost profile from sub-system bottom-up estimates

Phase II Effort

- Technical (on-project) effort: included in scaling above
- Physicist (off-project) effort: bottom-up estimate for each Phase II sub-system
 - ~50 FTE physicists per year FLAT profile within 10% during construction project
 - note: this fits within 2013 physicist effort on Upgrade R&D + Construction (62 FTE)

US Phase II Project Cost Estimate

System	ATLAS core (FY12 MCHF)	US Core (AYM\$)	US Total (AYM\$)
Tracker	157.5	20.9	42.8
LAr	47.2	11.9	42.5
TileCal	10.0	3.4	12.0
Muons	20.1	1.6	3.5
TDAQ	24.2	7.3	51.9
Common Costs	16.3	4.0	4.0
Base Project Cost	275.3	49.1	156.7
Proj. Management			10.0
Contingency (50%)		24.6	83.4
TOTAL COST	275.3	73.7	250.1
Physicist FTE/year			50

ATLAS Phase II Core Cost Profile*

US ATLAS Total Cost Profile

AY M\$

Benefits to US Infrastructure

* National Lab Facilities critical to ATLAS & CMS upgrades

- ATLAS participating labs: ANL, BNL, FNAL, LBNL, SLAC
 - o example facilities: LBNL Composites Fabrication Facility, SLAC test beam, electronics design/fab (all labs)
- CMS participating labs: FNAL (their primary Energy Frontier project)
 - example facilities: FNAL SiDet, FNAL test beam, FNAL Electrical Engineering Dept.
- Irradiation facilities: BNL-CO60, Indiana Cyclotron, FNAL-M03, LANL-LANSCE, LBNL, Dupage & Mass Gen Hospitals

Heavy use of University Technology Infrastructure

- clean rooms & silicon fabrication, many strong electronics design facilities
- ties to mechanical and electrical engineering departments
- excellent training ground for students and postdocs
 - o current US grad students: 214 (ATLAS), 247 (CMS)

Partnerships with US Industry (some examples)

- ATLAS: Allcomp Inc. (high thermal conductivity foams), Reflex Photonics (rad tolerant optical transceivers), Berkeley Design Automation (circuit simulation tools)
- CMS: Microsemi (rad-tolerant FPGAs), Tezzaron (3D ICs), Momentive Performance Materials Inc (thermally annealed pyrolitic graphite)

Conclusions

Clear case for Phase-II ATLAS upgrades

strong physics case + LHC environment ==> detector requirements

Major upgrades to both ATLAS & CMS

- ATLAS: Tracker, Trigger/DAQ, Forward Calorimeter, Electronics for LAr Calo, Muons
- CMS: Tracker, Trigger/DAQ, Endcap Calorimeters, Forward Muon System, Electronics
- meet physics requirements as cost-effectively as possible
- CERN Council endorsement of European Strategy for Particle Physics ==> CERN/Int'l HEP will proceed with LHC & detector upgrades

US contributions target areas of special US expertise

- no plans to expand US scope significantly
- build upon/enhance cutting-edge technology infrastructure at labs, universities, industry

Preliminary Phase-II US cost & effort

- ATLAS: \$250M, CMS: \$270M
- physicist FTE required to mount the upgrades fits within existing upgrade + Phase I effort

❖ US participation is critical to the success of ATLAS & CMS in Phase II

important to maintain our position as a reliable partner in international collaborations

BACKUP

New LHC Timeline

Previous LHC Timeline

LAr in Phase I

NSW in Phase I

TDAQ in 2012

Level-1 muon

Endcap sector logic Barrel sector logic

MUCTPI

Central trigger

High Level Trigger

Regions Of Interest

CTP

Request

Detector

Read-Out

DataFlow

Event building

Data Collection Network

SubFarmInput

Back-End Network

TDAQ Evolution: 2012 → Phase I

TDAQ in Phase I Calorimeter detectors 2012 Post LS1 Tile calorimeter D-laver 20 MHz 1.6 MB Muon detectors including NSW 40 MHz + 2.4 MB Level-1 calorimeter Level-1 muon Detector Read-Out Endcap Barrel sector logic sector logic FE FE FE nMCM Level-1 accept 70 kHz 100 GB/s → FELIX e/i FEX Electron/ Jet/ 100 kHz + 240 GB/sEnergy CMX CMX MUCTPI ROD ROD Level-1 Topology **DataFlow** CTP CTPCORE ReadOut System CTPOUT Level-2 requests Central trigge 25 kHz 8 GB/s Level-1 (< 2.5 µs) 40 kHz + 60 GB/sOther Detectors Regions Of Interest ROI Data Collection Network Requests High Level Trigger Event building 6.5 kHz 10 GB/s ROD ROD 12 kHz + 29 GB/s**HLT** processing Fast TracKer Event data (FTK) ~550 ms 600 Hz 960 MB/s SubFarm Output 1 kHz + 2.4 GB/sPhase 0 ⊐ Phase I

Level-1 calorimeter

Jet/ Energy

Preprocessor

Level-1 (< 2.5 μs)

Electron/ Tau

TDAQ Thresholds

Rı	ın 1		Run	2		Run	3	
	Threshold	Rate		Threshold	Rate		Threshold	Rate
	[GeV]	[kHz]		[GeV]	[kHz]		[GeV]	[kHz]
EM 101 B7	24	120	EN (201/11)	25	1.4	EN (OEVILID	20	14
EM18HV	24	130	EM30VHI	35	14	EM25VHR	30	14
EM30	35	61	EM80	100	2.5	EM80	100	2.5
2EM10	2x15	168	2EM20VH	2x25	3.4	2EM20VH	2x25	3.4
			2EM15VHI	2x20	2.9	2EM12VHR	2x17	5.0
EM total		270			20			20
MU15	25	82	MU20	25	26	MU20	25	12
2MU10	2x12	14	2MU11	2x14	4	2MU11	2x14	4
	2X12		ZIVIUII	2X14	_	ZMUTI	2X14	
Muon total		96			30			16
EM10VH_MU6	15,6	22	EM15VH_MU10	20,14	3.0	EM10VHR_MU10	15.14	3
2	10,0		EM10H_2MU6	15,2x6	2.5	EM10HR_2MU6	15,2x6	1.0
			Emiori_Emeo	10,210	2.0	Linioint_Lineo	10,2,0	1.0
TAU40	100	52	TAU80V	180	4.7	TAU80VR	180	3.2
			2TAU50V	2x110	3.8	2TAU40VR	2x100	3.9
2TAU11I_TAU15	30,45	147	2TAU20VI_3J20	2x50,60	5.2	2TAU15R_3J15	2x40,50	8.1
2TAU11I_EM14VH	30,20	60	2TAU20VI_			2TAU15R_		
			EM20VHI_3J20	50,25,60	2.0	EM15HR_3J15	40,20,50	2.0
			TAU15VI_MU15	40,20	3.8	TAU11VR_MU15	35,20	3.6
TAU15_XE35	40,80	63	TAU20VI_XE40_3J20	50,90,60	4.4	TAU15VR_XE40_3J15	40,90,60	5.0
Tau total		238	,		20			20
J75	200	23	J100	250	7.0	J100	250	7.0
4J15	4x55	87	4J25	4x60	3.3	4J25	4x55	3.3
			J75_XE40	200,150	8.3	J75_XE40	200,150	8.3
XE40	120	157	XE90	250	4.5	XE80	200	5
Jet/E _T ^{miss} total		306			23			23
Topological Trigger	rs	-			~ 10			~ 25
Total		~ 800			\sim 100			~ 100

 $\sqrt{s}=14 \text{ TeV}, L=3\times10^{34} (25 \text{ ns})$

US Phase I Org Chart

LAr Electronics in Phase II

FCAL in Phase II

US Phase II Project Schedule

	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026-2035
LHC		LS1		Run 2			LS2		Run 3			LS3		Run 4
ATLAS Analysis														
ATLAS Operations														
Phase-I	preprod		construct	ion		inst/	comm							
Phase-II Pixels					preprod	cons	truction				insta	all/commis	S	
Phase-II Strips					preprod	cons	truction				insta	all/commis	S	
Phase-II LAr Electr							preprod	cons	struction			inst/comn	n	
Phase-II FCAL							preprod	cons	struction			inst/comn	n	
Phase-II TileCal					demonst	rator/prep	rod		construct	on	insta	all/commis	S	
Phase-II Muons					preprod				construct	on	insta	all/commis	S	
Phase-II Trigger						preprod	cons	truction			insta	all/commis	S	
Phase-II Readout					preprod	construct	ion			com	miss			

Critical period: 2017-2018 (ops + Phase-I + Phase-II)

- Tracker: little overlap between Phase-II work and Ops (no Phase-I)
- LAr: Phase-II pre-production ramps up after critical period
- TileCal: little overlap between Phase-II work and Ops (no Phase-I)
- Muons: most groups do not have simultaneous Ph-I and Ph-II efforts
 - exception is BNL, which has a large pool of technical personnel
- TDAQ: conflict limited to L0/L1Calo work at a few institutes
 - FTK operational before LS2
 - Readout effort ongoing independent of Phase

Core to Total Cost Scaling

Scaling Used

Sub-system	Source	Core (AYM\$)	Total (AYM\$)	Scale
Silicon	original construction	12.26	25.13	2.05
Calorimeters	Phase I LAr	3.73	13.28	3.56
Muons	Phase I Muons	5.30	11.77	2.22
TDAQ	Phase I TDAQ	0.45	3.20	7.11

Comparison of Original ATLAS/Phase I with Phase II projects

Sub-system	Phase	large unit count	small-moderate unit count
Silicon	original Phase II	sensors, modules modules, staves, ASICs	
LAr Electronics	Phase I Phase II		Layer Sum Boards, Low Voltage Preamp/Shaper, ADC, optics ASICs
Muons	Phase I Phase II	ASICs MDT mezzanines & ASICs	MM Trigger & FE Boards CSMs
TDAQ	Phase I Phase II		Hub modules, Fiber Plant processing boards

Physicist FTE by Sub-system

Sub-system	Physicist FTE/year
Pixels	14
Strips	16
LAr Electronics	5.8
LAr FCAL	1.0
TileCal	2.8
Muons	4.0
TDAQ	5.8
TOTAL	49.4

Industrial Partners

Partial list of companies we work with

Company	A/C	Products
Agilent	A/C	test equipment
Allcomp	A/C	low-mass high-conductivity carbon foam materials
Applicad	Α	PCB assembly
Avago	A/C	opto links
Berkeley Design Automation	Α	high speed circuit simulation tools
CADENCE	A/C	design tools
CASCADE	С	silicon sensor characterisation
CVI	С	bump-bonding 3D ICs, glass-based interposers
Electrotek	Α	PCB fabrication
12E	A/C	chip packaging
Luxtera	Α	optical communications
MATERION	С	beam pipes
Mentor Graphics	A/C	design tools
Momentive Performance Materials	С	thermally annealed pyrolytic graphite (TPG)
MOSIS	A/C	chip fabrication
Quik-Pak	Α	chip packaging
Reflex Photonics	A/C	opto links
Rhode & Schwartz	Α	test equipment
RTI	С	silicon vias, bump bonding, & 3D vertical integration
Sygaris	С	wafer grinding, thinning, & dicing to 50 μm
Tezzaron	С	3D IC development & testing
Triangle Labs	Α	PC board manufacture (ATLAS Micromegas)
Xilinx	A/C	FPGAs
Ziptronix	С	DBI oxide bonding of sensors & electronics